Electronic structure of wet DNA.
نویسندگان
چکیده
The electronic properties of a Z-DNA crystal synthesized in the laboratory are investigated by means of density-functional theory Car-Parrinello calculations. The electronic structure has a gap of only 1.28 eV. This separates a manifold of 12 occupied states which came from the pi guanine orbitals from the lowest empty states in which the electron is transferred to the Na+ from PO-4 groups and water molecules. We have evaluated the anisotropic optical conductivity. At low frequency the conductivity is dominated by the pi-->Na+ transitions. Our calculation demonstrates that the cost of introducing electron holes in wet DNA strands could be lower than previously anticipated.
منابع مشابه
Electronic transport through dsDNA based junction: a Fibonacci model
A numerical study is presented to investigate the electronic transport properties through a synthetic DNA molecule based on a quasiperiodic arrangement of its constituent nucleotides. Using a generalized Green's function technique, the electronic conduction through the poly(GACT)-poly(CTGA) DNA molecule in a metal/DNA/metal model structure has been studied. Making use of a renormalization schem...
متن کاملInterband optical transitions in DNA-like systems
The underlying band structure of the uniform DNA suggests the allowance of interband optical transitions. We consider such transitions in the uniform synthetic DNA, such as the poly G -poly C DNA, within a simple tight-binding model with a minimum set of parameters. We demonstrate that the helical conformation of the DNA strands results in unusual interband optical transitions all of which appe...
متن کاملA genre Analysis of the Scholarly Electronic Mail: Implications for Pedagogy
Scholarly mails apparently display stable conventional principles as an emerging genre. Thus, contributors should structure their electronic mails appropriately when writing for purposes of discussing professional topics. However, this requirement plunges many a scholar in dilemma as to how to go about this vital undertaking without written structural norms in electronic mail communication. Thi...
متن کاملTight- binding study of electronic band structure of anisotropic honeycomb lattice
The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...
متن کاملElectronic band structure of a Carbon nanotube superlattice
By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 89 10 شماره
صفحات -
تاریخ انتشار 2002